If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.6x^2-14x-180=0
a = 0.6; b = -14; c = -180;
Δ = b2-4ac
Δ = -142-4·0.6·(-180)
Δ = 628
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{628}=\sqrt{4*157}=\sqrt{4}*\sqrt{157}=2\sqrt{157}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{157}}{2*0.6}=\frac{14-2\sqrt{157}}{1.2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{157}}{2*0.6}=\frac{14+2\sqrt{157}}{1.2} $
| 6x+2(1-x)=2(2x-2) | | 14=10q-6 | | 14=1-q-6 | | 16-4x=1+x | | (4x+4)+(6x+14)+(2x+7)=180 | | 1+5m=-3m+1 | | 15x-3x+6(2x+1)=2x+28 | | n+7÷-9=-18 | | (2y+20)+40=180 | | 5y+6=16y-3+54 | | 6v+6=1+v | | t-2.5=-2.1 | | 6n^2-12n=0 | | n+5=2n-5 | | (2y+20)+40=140 | | 5-4x=85 | | -3.7k=11.47 | | 6u+u=10 | | 10=6u+u | | 2x=6/40+3 | | 0.4x-3=33 | | -30+-6a=54 | | -7(-3v+5)-v=6(v-7)-3 | | 3x=+144 | | -(6x–9)=27 | | 18=16x-7x | | x-47+8=18 | | 4(2-x)+1=2-5(1-4x) | | z4−2=1 | | 2x+5+5x-1=180 | | 273=-v+92 | | 16y=8y+32 |